Department of Mathematics and Statistics
 Indian Institute of Technology Kanpur
 End-Course Examination (September 19, 2013) Grading Scheme MSO202A/MSO202: Introduction To Complex Analysis

Roll No.: \qquad Section: \qquad

Time: 120 Minutes
Marks: 120

Name: \qquad Seat Number. \qquad
Note: Give only answers (no details of workout) for Problems 1 to 16 at dotted lines. Problems 1-8 are of $\mathbf{7}$ marks each and Problems 9-16 are of 8 marks each.

1. Let the circle $\left|z-z_{0}\right|=r$ pass through complex numbers α and $1 / \bar{\alpha}$. If $\left|z_{0}\right|^{2} \neq 1+r^{2}$, then
$|\alpha|=$ \qquad

Solution: The given circle passes through α and $1 / \bar{\alpha}$ implies
$\left|\alpha-z_{0}\right|^{2}=r^{2} \Rightarrow|\alpha|^{2}+\left|z_{0}\right|^{2}-2 \operatorname{Re}\left(\bar{\alpha} z_{0}\right)=r^{2}$
$\left|1-\bar{\alpha} z_{0}\right|^{2}=|\alpha|^{2} r^{2} \Rightarrow 1+|\alpha|^{2}\left|z_{0}\right|^{2}-2 \operatorname{Re}\left(\bar{\alpha} z_{0}\right)=|\alpha|^{2} r^{2}$
Subtracting the second equation from the first gives $\left(1-|\alpha|^{2}\right)\left(1+r^{2}-\left|z_{0}\right|^{2}\right)=0$. Therefore, $\left|z_{0}\right|^{2} \neq 1+r^{2} \Rightarrow|\alpha|=1$.
2. Let $S=\left\{z: \operatorname{Im}\left(\frac{z-1-\sqrt{3} i)}{1+\sqrt{3} i}\right)<0\right\} \cap\{z:|z|<2\} \cap\{z: \operatorname{Re} z>0\}$. Then,

Area of set $S=$ \qquad

Solution: The region S is the sector of the disk $|z|<2$ lying in the right half plane, below the line $y=\sqrt{3} x$. This sector subtends an angle $\frac{\pi}{3}+\frac{\pi}{2}=\frac{5 \pi}{6}$ at its center. Therefore, Area of $S=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 4 \times \frac{5 \pi}{6}=\frac{5 \pi}{3}$.
(7 marks)
3. The value of $\oint|z|^{2} \bar{z} d z$, where Γ is counter-clockwise oriented boundary of the region $D=\left\{z=x+i y: x^{2}+9 y^{2}<1, y>0\right\}$, is

Solution: The boundary of D consists of the counter-clockwise oriented part of ellipse $C: z(t)=\cos t+i \frac{\sin t}{3}$ in the upper half plane and the line segment $[-1,1]$. Therefore, $0<t<\pi . \int_{\Gamma}|z|^{2} \bar{z} d z=\int_{C}|z|^{2} \bar{z} d z+\int_{-1}^{1} x^{3} d x=I_{1}+I_{2}$.
$I_{2}=0$ and
$I_{1}=\int_{0}^{\pi}\left(\cos ^{2} t+\frac{\sin ^{2} t}{9}\right)\left(\cos t-i \frac{\sin t}{3}\right)\left(-\sin t+i \frac{\cos t}{3}\right) d t$

$$
\begin{align*}
& =\frac{1}{81} \int_{0}^{\pi}(5+4 \cos 2 t)(-4 \sin 2 t+3 i) d t=\frac{1}{81} \int_{0}^{\pi}(-8 \sin 4 t-20 \sin 2 t)+\frac{i}{27} \int_{0}^{\pi}(5+4 \cos 2 t) d t \tag{*}\\
& =0+\frac{i}{27}[2 \sin 2 t+5 t]_{0}^{\pi}=\frac{5 \pi i}{27}
\end{align*}
$$

(7 marks, deduct 2 marks if answer is left at step (*))
4. Under the mapping $w=\sin z$, the rectangular region $\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq 3\}$ is mapped onto a region D . Then,

Area of $D=$.
Solution: The function $w=\sin z=\sin x \cosh y+i \cos x \sinh y$ maps the given rectangular region in half-elliptical region D lying in right half plane with boundaries consisting of the line segments $0 \leq u \leq \cosh 3,-\sinh 3 \leq v \leq \sinh 3$ and the part of ellipse $\frac{u^{2}}{\cosh ^{2} 3}+\frac{v^{2}}{\sinh ^{2} 3}=1$ lying in right-half plane. Therefore, Area of $D=\frac{\pi \cosh 3 \sinh 3}{2}$.
(7 marks)
5. The expression of $\cot ^{-1} Z$ in terms of complex logarithmic function is

Solution:

$$
\begin{equation*}
w=\cot ^{-1} z \Rightarrow \cot w=z \Rightarrow \frac{i\left(e^{i w}+e^{-i w}\right)}{\left(e^{i w}-e^{-i w}\right)}=z \Rightarrow e^{2 i w}=\log \left(\frac{z+i}{z-i}\right) \Rightarrow w=\frac{i}{2} \log \left(\frac{z+i}{z-i}\right) \tag{7marks}
\end{equation*}
$$

6. Let $e^{e^{3 z}}$ be bounded on the line $C_{p}=\{(x, y):-\infty<x<\infty, y=p\}$, where p is a constant. If p lies in any one of the intervals $\left[\alpha_{k}, \beta_{k}\right], k=0, \pm 1, \pm 2, \ldots .$. , then
(i) $\alpha_{k}=$ \qquad (ii) $\beta_{k}=$ \qquad
Solution: Since $\left|e^{e^{3 z}}\right|=e^{e^{3 x} \cos 3 y}$ and $\cos 3 y \leq 0$ for $3 y=3 p \in\left[\frac{\pi}{2}+2 k \pi, \frac{3 \pi}{2}+2 k \pi\right], k=0, \pm 1, \pm 2, \ldots .$. , the function $e^{e^{3 z}}$ is bounded on line C_{p} for $p \in\left[\frac{\pi}{6}+\frac{2 k \pi}{3}, \frac{\pi}{2}+\frac{2 k \pi}{3}\right]$. This gives $\alpha_{k}=\frac{\pi}{6}+\frac{2 k \pi}{3}$ and $\beta_{k}=\frac{\pi}{2}+\frac{2 k \pi}{3}$.
7. Let the function $g(z)=u(x, y)+i v(x, y)$ be defined by $g(z)=\frac{2 z^{11}}{|z|^{10}}$, if $z \neq 0$ and $g(z)=0$, if $z=0$. Then,
(i) $u_{x}(0,0)=$ \qquad (ii) $u_{y}(0,0)=$ \qquad (iii) $v_{x}(0,0)=$ \qquad (iv) $v_{y}(0,0)=$ \qquad

Solution:

$g(\Delta x, 0)=\frac{2 \Delta x^{11}}{|\Delta x|^{10}}$ and $g(0, \Delta y)=\frac{-2 i \Delta y^{11}}{|\Delta y|^{10}} \Rightarrow \frac{u(\Delta x, 0)}{\Delta x}=\frac{2 \Delta x^{10}}{|\Delta x|^{10}}, \frac{v(\Delta x, 0)}{\Delta x}=0, \frac{u(0, \Delta y)}{\Delta y}=0, \frac{v(0, \Delta y)}{\Delta y}=-\frac{2 \Delta y^{10}}{|\Delta y|^{10}}$ $\Rightarrow u_{x}(0,0)=2, u_{y}(0,0)=0, v_{x}(0,0)=0, v_{y}(0,0)=-2$.
(7 marks, 4 marks for (i) and (iv) correct, 3 marks for (ii) and (iii) correct)
8. Let the Taylor series of $h(z)=\frac{1}{1-z-z^{2}}$ around the point $z=0$ be $\sum_{n=0}^{\infty} a_{n} z^{n}$. If $\alpha, \beta(\alpha>\beta)$ are the roots of the equation $z^{2}+z-1=0$, then a_{n} in terms of α, β is

Solution: $h(z)=\frac{1}{\beta-\alpha}\left[\frac{1}{\beta}\left(\frac{1}{1-z / \beta}\right)-\frac{1}{\alpha}\left(\frac{1}{1-z / \alpha}\right), \quad \alpha=\frac{\sqrt{5}-1}{2}, \beta=-\frac{\sqrt{5}+1}{2}\right.$

$$
\Rightarrow h(z)=\frac{1}{\beta-\alpha}\left[\sum_{n=0}^{\infty} \frac{z^{n}}{\beta^{n+1}}-\sum_{n=0}^{\infty} \frac{z^{n}}{\alpha^{n+1}}\right]=\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \frac{\beta^{n+1}-\alpha^{n+1}}{(\alpha \beta)^{n+1}} z^{n},|z|<\alpha
$$

$\Rightarrow a_{n}=\frac{1}{\sqrt{5}}\left[\frac{\beta^{n+1}-\alpha^{n+1}}{(\alpha \beta)^{n+1}}\right]$.
(7 marks, deduct only 2 marks if answer differs by a negative sign)
9. If the largest annulus in which Laurent series $\sum_{n=1}^{\infty} \frac{3^{n^{2}}}{(2 n)!} z^{n^{2}}+\sum_{n=1}^{\infty} 4^{n^{2}} z^{-n^{2}}$ converges is $r_{1}<|z|<r_{2}$, then (i) $r_{1}=$ \qquad (ii) $r_{2}=$ \qquad
Solution: The series $\sum_{n=1}^{\infty} \frac{3^{n^{2}}}{(2 n)!} z^{n^{2}}$ converges in $|z|<\frac{1}{3}$, since
$\lim _{n \rightarrow \infty}\left|\frac{a_{n-1}}{a_{n}}\right|^{1 /\left(\lambda_{n}-\lambda_{n-1}\right)}=\lim _{n \rightarrow \infty}\left|\frac{3^{(n-1)^{2}}}{(2 n-2)!} \frac{(2 n)!}{3^{n^{2}}}\right|^{1 /\left(n^{2}-(n-1)^{2}\right)}=\lim _{n \rightarrow \infty}\left|\frac{(2 n)(2 n-1)}{3^{2 n-1}}\right|^{1 /(2 n-1)}=\frac{1}{3} .$.
The series $\sum_{n=1}^{\infty} 4^{n^{2}} z^{-n^{2}}$ converges in $|z|>4$, since radius of convergence of series $\sum_{n=1}^{\infty} 4^{n^{2}} w^{n^{2}}$ is $\frac{1}{4}$, with $w=\frac{1}{z}$.
Therefore, largest annulus of convergence of given Laurent series is empty \Rightarrow such r_{1}, r_{2} do not exist .
10. The residues of the function $\psi(z)=\frac{z^{101}}{(2 z-1)^{100}}$ at its singularities in extended complex plane are
\qquad
\qquad
Solution: The function $\psi(z)$ has two singularities at $z=\frac{1}{2}$ and $z=\infty$ in extended complex plane. For residue of $\psi(z)$ at $z=\infty$, observe that $\psi(1 / z)=\frac{1 / z^{101}}{\left(\frac{2}{z}-1\right)^{100}}=\frac{1}{z(2-z)^{100}}=\frac{1}{2^{100} z}\left(1-\frac{z}{2}\right)^{-100}$
$\Rightarrow-$ 'coefficient of z in the Laurent's expansion of $\psi(1 / z)$ around $0^{\prime}=-\frac{100 \times 101}{2^{103}}$
$\Rightarrow \operatorname{Res}_{z=\infty} \frac{z^{101}}{(2 z-1)^{100}}=-\frac{100 \times 101}{2^{103}}$
$\operatorname{Res}_{z=1 / 2} \frac{z^{101}}{(2 z-1)^{100}}=\frac{100 \times 101}{2^{103}}$ (since sum of residues of a function in extended complex plane is zero)

(8 marks, 4 marks for each correct answer)

11. Let γ be a simple, closed, piecewise smooth curve oriented counterclockwise and not passing through the points $z_{1}=5$ and $z_{2}=2$. Then, the possible values of $I=\oint_{\gamma} \frac{1}{\left(z^{2}-7 z+10\right)^{3}} d z$ are

Solution:

(i) None of the points 5, 2 are enclosed by $\gamma: I=0$ (by Cauchy Theorem)
(ii) The point 5 is enclosed but the point 2 is not enclosed by γ :
$I=\int_{\gamma} \frac{1}{(z-5)^{3}(z-2)^{3}} d z=\frac{2 \pi i}{2!} \times\left[\frac{d^{2}}{d z^{2}} \frac{1}{(z-2)^{3}}\right]_{z=5}=\frac{2 \pi i}{2!} \times 3 \times 4 \times \frac{1}{3^{5}}=\frac{4}{3^{4}} \pi i \quad$ (by Cauchy Integral Formula For derivatives)
(iii) The point 2 is enclosed but the point 5 is not enclosed by γ :
$I=\int_{\gamma} \frac{1}{(z-5)^{3}(z-2)^{3}} d z=\frac{2 \pi i}{2!} \times\left[\frac{d^{2}}{d z^{2}} \frac{1}{(z-5)^{3}}\right]_{z=2}=-\frac{2 \pi i}{2!} \times 3 \times 4 \times \frac{1}{3^{5}}=-\frac{4}{3^{4}} \pi i \quad$ (by Cauchy Integral Formula
For derivatives)
(iv) Both of the points 2,5 are enclosed by $\gamma: I=\int_{\gamma} \frac{1}{(z-5)^{3}(z-2)^{3}} d z=\frac{4}{3^{4}} \pi i-\frac{4}{3^{4}} \pi i=0$.

(8 marks, 5 marks for any two correct answers, 3 marks for any one correct answer)

12. Let $I=\int_{-\infty}^{\infty} \frac{e^{i \alpha x}}{\left(x^{2}+a^{2}\right)(x-i a)} d x ; \alpha>0, a>0$. Then, the principal value of integral I is

Solution: The function $f(z)=\frac{1}{\left(z^{2}+a^{2}\right)(z-i a)} \rightarrow 0$ as $z \rightarrow \infty$ in the upper half plane and it has a pole of order 2 at $\mathrm{z}=$ ia in the upper half plane.

$$
\begin{aligned}
\therefore I & =2 \pi i \underset{z=i a}{r e s}\left[\frac{e^{i \alpha z}}{\left(z^{2}+a^{2}\right)(z-i a)}\right]=2 \pi i\left\{\frac{d}{d z}\left(\frac{e^{i \alpha z}}{z+i a}\right)\right\}_{z=i a} \\
& =2 \pi i\left[\frac{i \alpha e^{i \alpha z}(z+i a)-e^{i \alpha z}}{(z+i a)^{2}}\right]_{z=i a}=2 \pi i e^{-a \alpha}\left[\frac{1+2 a \alpha}{4 a^{2}}\right]
\end{aligned}
$$

(8 marks, deduct 2 marks only for minor slips in answer)
13. Let $h(z)=\frac{\sin ^{14} z}{z^{3}(z-1)^{4}}$. Then, change in the argument of $h(z)$ as z describes the circle $z(t)=2 e^{i t}, 0 \leq t<2 \pi$, once in counterclockwise direction is
\qquad
Solution: The function $h(z)$ has a zero of order 11 at $z=0$ and a pole of order 4 at $z=1$, lying in $|z|<2$ and $h(z) \neq 0$ on $|z|=2$. Therefore, change in the argument of $h(z)$ as z describes the circle $z(t)=2 e^{i t}, 0 \leq t<2 \pi$, once in counterclockwise direction is $2 \pi(11-4)=14 \pi$.
(8 marks, deduct only 2 marks if answer is 7, deduct 2 marks if answer differs by a negative sign)
14. The number of zeros of the polynomial $P(z)=z^{5}-z+16$ lying in the annulus $1<|z|<2$ are

Solution: Let $f_{1}(z)=z^{5}$ and $g_{1}(z)=-z+16$. Then, on $|z|=2,\left|f_{1}(z)\right|=32$ and $\left|g_{1}(z)\right|<18$
$\Rightarrow\left|f_{1}(z)\right|>\left|g_{1}(z)\right|$ on $|z|=2 \Rightarrow f_{1}(z)$ and $f_{1}(z)+g_{1}(z) \mid=P(z)$ have the same number of zeros in $|z|<2$ (by Rouche Theorem $\Rightarrow P(z)$ has 5 zeros in $|z|<2$, since $f_{1}(z)$ has 5 zeros in $|z|<2$.
Next let $f_{2}(z)=16$ and $g_{2}(z)=z^{5}-z$. Then, on $|z|=1,\left|f_{2}(z)\right|=16$ and $\left|g_{2}(z)\right|<2$
$\Rightarrow\left|f_{2}(z)\right|>\left|g_{2}(z)\right|$ on $|z|=1 \Rightarrow f_{2}(z)$ and $f_{2}(z)+g_{2}(z) \mid=P(z)$ have the same number of zeros in $|z|<1$ (by Rouche Theorem $\Rightarrow P(z)$ has no zeros in $|z|<1$, since $f_{2}(z)$ has no zeros in $|z|<1$.

Therefore, the number of zeros of polynomial $P(z)$ lying in the annulus $1<|z|<2$ are 5 .
15. Let Mobius Transformation $M(z)=\frac{z+1}{z}$ maps the circle with center $1+i$ and radius 3 onto a circle with center a and radius r. Then,
(i) $a=$ \qquad (ii) $r=$ \qquad

Solution: Observe that $M(z)=\frac{1}{z}+1$. The image of given circle $|z-1-i|=3$ under the mapping $w=\frac{1}{z}$ is
$\left|\frac{1}{w}-1-i\right|=3 \Rightarrow|(1+i) w-1|^{2}=9|w|^{2} \Rightarrow 2|w|^{2}-2 \operatorname{Re}((1+i) w)+1=9|w|^{2}$
$\Rightarrow 7\left(u^{2}+v^{2}\right)+2 u-2 v-1=0$, where $w=u+i v$
whose center is $-\frac{1}{7}+\frac{1}{7} i$, radius is $\sqrt{\frac{1}{49}+\frac{1}{49}+\frac{1}{7}}=\sqrt{\frac{9}{49}}=\frac{3}{7}$.
Therefore, the center and radius of the required circle is $a=\left(1-\frac{1}{7}\right)+\frac{1}{7} i=\frac{6}{7}+\frac{1}{7} i, r=\frac{3}{7}$.
(4 marks for each correct answer, 2 marks out of 4 if the value of a is found as $-\frac{1}{7}+\frac{1}{7}$ i)
16. The Mobius transformation $w=R(z)$ that maps points $z=1$, i and $-i$ to the points $w=1$, i and $-1+2 i$, respectively, is expressed as $\frac{w-i}{w+1-2 i}=\alpha \frac{z-i}{z+i}$, where α is a complex number. Then,
(i) $\alpha=$ \qquad (ii) $R(-1)=$
\qquad

Solution: The Mobius transformation $w=R(z)$ is given by
$\frac{w-i}{w+1-2 i} / \frac{1-i}{2-2 i}=\frac{z-i}{z+i} / \frac{1-i}{1+i} \Rightarrow \alpha=\frac{1+i}{2(1-i)}=\frac{i}{2}$.
$\frac{w-i}{w+1-2 i} \times 2=-1$ at $z=-1 \Rightarrow w=R(-1)=-\frac{1}{3}+\frac{4}{3} i$

